Newton-like Methods with At least Quadratic Order of Convergence for the Computation of Fixed Points

نویسنده

  • Ioannis K. Argyros
چکیده

The well known contraction mapping principle or Banach’s fixed point theorem asserts: The method for successive substitutions converges only linearly to a fixed point of an operator equation in a Banach space setting [5], [7]. In practice, if Newton’s method is used one ignores the additional information about the contraction mapping information. Werner in [9] provided a local analysis for a Newton-like method of at least Q-order 3 which uses this information. Here we provide a finer local convergence analysis for the same method under weaker hypotheses which do not necessarily imply the contraction property of the mapping. A numerical example is provided to show that our results compare favorably with the ones in [9]. The semilocal convergence of the method not considered in [9] is also examined. AMS (MOS) Subject Classification Codes: 65G99, 65H10, 47H17, 49M15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Continuation Methods and Disjoint Equilibria

Continuation methods are efficient to trace branches of fixed point solutions in parameter space as long as these branches are connected. However, the computation of isolated branches of fixed points is a crucial issue and require ad-hoc techniques. We suggest a modification of the standard continuation methods to determine these isolated branches more systematically. The so-called residue cont...

متن کامل

Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems: II. Accelerated algorithms

The computation of a defective eigenpair of nonlinear algebraic eigenproblems of the form T (λ)v = 0 is challenging due to its ill-posedness and the linear convergence of classical single-vector Newton-like methods. In this paper, we propose and study new accelerated Newton-like methods for defective eigenvalues which exhibit quadratic local convergence at the cost of solving two linear systems...

متن کامل

Solving systems of nonlinear equations using decomposition technique

A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...

متن کامل

Semi-smooth Second-order Type Methods for Composite Convex Programs

The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: i) Many well-known operator splitting methods, such as forward-backward splitting (FBS) and Douglas-Rachford splitting (DRS), actually define a possibly semi-smooth and monotone fixed-point mapping; ii) The optimal solutions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011